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Intermittency and coherent structures in the two-dimensional inverse energy cascade:
Comparing numerical and laboratory experiments
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We study the internal intermittency in the inverse energy cascade and in the condensation regime of two-
dimensional turbulence, using physical and numerical experimental approaches. The analysis confirms that the
velocity increments have nearly Gaussian distributions at all scales in the inverse cascade regime; it moreover
shows that, in the condensation regime, the probability distribution functions of the velocity increments are
non-Gaussian but do not significantly vary with the scale; it follows that one may consider that there is
essentially no intermittencgin the usual senggin the condensation regime. In both regimes, we emphasize
that coherent structurdse., long-lived vorticesare clearly visible on the vorticity field, and we suggest the
non-Gaussianity of the distributions in the condensation regime is due to the presence of a large-scale long-
lived structures. The study is supplemented by the analysis of the distribution of energy transfers at various

scales.
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[. INTRODUCTION intermittency, in a system where the energy transfers are pre-
sumably nonintermittent.
Recent experiments, performed in soap filrhg in mer- The purpose of the present study is to thus address this

cury [2], and in shallow layers of electrolyf@], have con- question from both numerical and physical points of view.
firmed theoretical proposals, made long ago by Kraichnarror completeness, we also study in the numerical case the
[4], on the inverse energy cascade in two-dimensional turbupair distribution function(PDF) of energy fluxes. The latter
lence. In particular, an inertial range in which Kolmogorov- approach is not feasible yet in laboratory experiments due to
Kraichnan k~2 spectral law holds was convincingly ob- the difficulty of obtaining a proper determination of the pres-
tained in these studies. There seems to be little doubt nowure field.
that the inverse energy cascade dynamics can be developed
in physical systems when three-dimensional perturbations Il. EXPERIMENTS AND ANALYZING TOOLS
are maintained at sufficiently low level and, consequently,
when three-dimensional effects enter as a negligible factor
compared with the constraint imposed by basic quadratic in- The numerical procedure is described in more detail in
variants of two-dimensiondPD) motion. These experimen- [7]. In the numerical approach, we simulate the two-
tal results agreed well with earlier direct numerical simula-dimensional motion of an incompressible fluid by solving the
tions [5-8], which consistently conveyed numerical vorticity equation on a doubly periodic square domain of size
evidence concerning Kraichnan’s prediction. Moreover, labo2 7 X 21 using a pseudospectral approximat{di2]:
ratory and numerical investigations concluded that intermit-
tency in the two-dimensional energy cascade regime is very dho+I(w,¢)=F,—D,, (1)
weak[7-9]. This fact has been observed in forced 2D nu- R
merical experiments dissipated at large s¢@leit was also Where w=curlv is the vorticity component orthogonal to
observed in the early nonstationary simulations of Refplane of motion, ¢ the stream function,J the two-
[10,11]. This is a quite surprising property of the 2D turbu- dimensional Jacobian operatdf,, an external vorticity
lent dynamics, compared the 3D direct energy cascadeource, and , the vorticity sink associated with dissipation.
which diplays internal intermittency. The latter is the sum of a large-scale linear friction and a
It seemed to us worthwhile to investigate whether there ismall-scale dissipation. Forcing is achieved by keeping con-
internal intermittency in the condensation regime, i.e., wherstant the amplitude of a given Fourier mokie
friction is so low that energy piles up at a wave number In the sequel, we will consider three different numerical
comparable to the box wave number, a situation anticipate@xperiments with various resolutions and configurations:
by Kraichnan long ag$4]. Condensation regimes are char- (1) (DNS.I) 1024x 1024 grid simulation forced at a large
acterized by the presence of large-scale long-lived structuregjave numbeik; =256 and dissipated by thenticipated po-
which, in the litterature, are often suspected as sources déntial vorticity methocat small scal¢12] and by linear fric-
intermittency(albeit in a loose sengdt is thus interesting to  tion at large scale; this simulation presents a well developed
investigate that sort of contribution they can make in thisinverse energy cascade in statistically steady state where the
respect, and whether they may favor the buildup of internak~>2 behavior is observed through one decéide

A. Numerical experiments
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(2) (DNS.II) 512x 512 grid simulation forced at a smaller
wave numbek, =40 and dissipated by the iterated Laplacian
method (A\%) at small scale and by linear friction at large
scale; this simulation presents a stationary energy cascading
range roughly consistent withla > behavior in which co-
herent vortices are more intense and higher in size compared
to the experiment{DNS.I).

(3) (DNS.III) 256X 256 grid simulation forced at; =30
and dissipated by thA® iterated Laplacian method at small
scale while the large scale friction is set to zero. This simu-
lation presents a nonstationary evolution of the inverse en-
ergy cascade characterized by a growth of the vortical struc-
tures and an accumulation of the turbulent kinetic energy at
the largest scales of motion with ka 3-compatible energy
spectrum. This simulation shows coherent vortices having
characteristic sizes encompassing the energy-cascading
range: one can see in Fig. 1 vortices with sizes ranging from
the injection scale to a fraction of the box size for the largest
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two of them. 350
B. Laboratory experiments 300

The laboratory experiment is described in some detail in 55
[3]. The flow is generated in a PVC cell filled by two layers
of NaCl solution, the heavier underlying the lighter. This 200
stable stratification enables a two-dimensional behavior. The
dissipation is provided by fluid viscosity and friction exerted 150
by the bottom wall on the fluid. The conductive fluid is
forced by an electric currer(driven through the cell from 100
one side to anothgroupled to a magnetic fielghroduced by 50
permanent magnets located just below the bottom of the
cell). We shall consider two different experiments: = s

(1) (LE.I) This experiment, studied inFc)ietaiI i8], exhib- S0 100 150 200 250 300 350
its a stationary regime, and spectral properties similar to the ()
simulation(DNS.]). It displays ak > behavior over a range 250
slightly narrower than one decade.

(2) (LE.II) In this experiment, accumulation of energy at
large scales is achieved by increasing the depth of the liquid 200
layer, thus decreasing the bottom friction. In this case, the
flow structure is organized by a single intense vortex. The
velocity spectrum is characterized by a peak at the lowest 150
available wave number and is consistent witk & spectral
law [13]. This flow is to be compared with the numerical 100
flow (DNS.III).

Figure 1 shows vorticity levels for the numerical experi-
ments. Typical stream functions of the laboratory experi- 50
ments are displayed i8] (Figs. 5 and 1Y. We also display
in Fig. 2 vorticity cross sections for experimeritsE.l) and

DNS |, Il, and Ill. A vorticity cross section for experiment
(LE.II) can be found if3] (Fig. 19. It can be clearly ob-
served that in experiment&E.l), (LE.II), and (DNS.I) the
highest vorticity values are about two to eight times the root-
mean-square deviatiom,,s of w. Conversely the intense

(©

50 100 150

FIG. 1. Isovorticity levels for numerical experimerigs DNS |,
r{b) Il, (c) : w=0 (dotted,|w|=w,ms (solid. The boxes shown
are 60-injection scales wide.

vortices of experiment$DNS.II) and (DNS.III) are charac-

terized by a vorticity value at the core larger than 15 or eve

20 timeswms-

two-point velocity differences longitudinal to the separation

vector| and thehyperflatness factorsf the longitudinal ve-
From the measurement of the velocity field, one can caldocity increments as a function of=||I]|. They are defined

culate theprobability distribution function Rév|) of the by the following relations:

C. Analyzing tools
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FIG. 2. Typical vorticity profiles across vortices in experimeti&;(LE.I); (b) DNS I; (c) II; and (d) IlI.

Son(l) the absence of intermittency. Indeed, a constant shape is
= , (2)  equivalent tol-independent values oH,,. With S,,(l)
Sx(1)" =H,,S,(1)" andS,(1) =1 one gets/,,=n¢, and no inter-
. ) mittency correction to the linear lag,on.
where the structure function is defined as On the other hand, hyperflatness factors only measure the
i deviations of the PDF from the Gaussianibreadth of PDF
Sy()=(Svy(HM= J P(v)o"dv, 3) tails) since they can be compared to the Gaussian expectation
— H,,=(2n)!/2"n!. Velocity statistics may be in principle
non-Gaussian and still nonintermittertitdependent shape
ov is the longitudinal velocity increment at the separationof the PDF, and therefore constant values Hf,, H,,
distancel. In the above relation, the brackets mean average- const# (2n)!/2"n!).
over the entire flow field, over the direction bfand in time. From a viewpoint more connected to the cascade concept,
For the unsteady experime(@NS.IIl) we averaged over a the intermittency can also be questioned by a direct study of
time period of 200 turnover times, which is small comparedthe energy flux defined in physical spddd]. The flux ¢, is
to the time scale for the evolution of the energy spectrumdefined by
For the experimen{LE.Il) the averaging in time is per-
formed while the total circulation remains constant. As in % v?
Q1=
|

Han(1)

[9], we restricted ourselves to moment ordesuch that the > tpjv nds, (4)
function P;(v)v" is smooth within the resolved range of
ov| - _ . _ _
These statistical quantities measure different phenomenaherep is the pressure and is the outwards oriented unit
The correct criterion for intermittency stems from the shapevector normal to the control contod; with typical sizel.

dependence of the PDF with a constant shape indicating Sincen is outwards oriented, a positive value @f is con-
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FIG. 3. (a) Rescaled PDFs of longitudinal velocity increments

for three different separationg’(/,=2,5,10) in the inertial range. Il RESULTS

A Gaussian(dashed curveis shown as a referencé) Hyperflat- A. The inverse cascade regime, or small-scale structured

ness factors as a function of scale, in the numerical experiment turbulence

(DNS.)). Straight dashed lines represent Gaussian valges. . .

= svl( v2) V2 In the inverse cascade, there are long-lived structures,

whose sizes are on the injection scale of the energy. The
characteristics of such “coherent” structures have been ana-
lyzed in Ref.[3]. These vortices may merge from time to
nected to an energy transfer to scales larger thand vice  time (as shown in Babiano’s simulatipnbut, at variance
versa. For each position, one can define a circular control with the free-decay case, the merging process remains local-

contour with centex and diametet, and therefore a local 12€d around the energy injection scalgit was not so, en-
- o strophy would be transferred at large scales, which is consid-
flux ¢;(x). As for the velocity incrementsp, depends on

i d i d o it ; red as unlikely in the inverse cascad®©wing to the
Ime and position, and oné can compute 1ts Moments anfyeqence of small-scale coherent structures, we may also call

PDF. It follows from its definition and the incompressibility {he inverse cascade regime *
constraint thakp, has a zero spatial average, so that we dijgnce.”

rectly get the fluctuations of the energy flux. The intermit-  \we focus here on the numerical and laboratory experi-
tency signature will now be an eventdadependence of the ments(DNS.I) and (LE.l), where a statistically steady in-
shape of its PDF. verse energy cascade is achieved. Figutasahd 4a) show

We will always be interested in thedependence of the the PDFs of the two-point longitudinal velocity increments at
shape of the PDFs. We therefore present normalized PDFseparation length scaléd,=2,5,10 (,= w/k;), encompass-
with variance one. Both the variable and its probability dis-ing the energy inertial range. The PDF are close to Gaussian
tribution are then dimensionless. The pressure could not bat all scales in both cases. Numerical and experimental find-
accurately measured in the experimental setup, hence we arggs therefore agree and show that the intermittency correc-
unable to present transfer statistics for the laboratory experiion remains small in the 2D inverse energy cascade. We
ments. emphasize on the fact that the prominent structures observed

small-scale structured turbu-
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in these stationary flows have a characteristic size of the
order of the injection scalesee Figs. 1 anfB], respectively.

We can characterize their importance by the raRg
=I,/L (I, being the typical vortex size arldthe box siz¢

and their intensityt, - w, / w,ms (w, being the typical vortic-

ity at the core of vortices and,,s the root mean square of
vorticity over the entire flolw We haveR,=0.002,1,~=3 for
(DNS.l), andR,=0.05, 1 ,=1.5 for (LE.I).

Hyperflatness factors, defined by ES), are also repre-
sented in Figs. &) and 4b) for several orders oh up to
2n=12 (thus corresponding to the 12th order moment of the
distribution of the velocity incrementsThe dashed lines
represent the Gaussian expectation at each order. One sees
that up to 21=6 the numerical and experimental values are
close to the Gaussian expectation throughout the inertial
range. At higher order, there is a systematic deviation, which
increases with the order, reaching 25% far=212, but they
may be considered as within the error bar.

B. Condensation regime, or large-scale structured turbulence

In the condensation regime, there are long lived struc-
tures, whose sizes are on the box scale, or on the lattice mesh
scale(for periodic boundary conditionsThese vortices con-
tain a substantial part, the energy of the system, since they &
are associated to a prominent peak in the energy spectra.
Owing to the presence of such structures, we may also call
the condensation regime as “large-scale structured turbu-
lence.”

The presence of large-scale structures in the condensation
regime is visible in the numerical and laboratory experiments
(DNS.1I) and(LE.II); the long-lived vortices have a charac-
teristic sizelarger than the injection scalgwe now have
R,=0.3 for both experimentd,,=15 for (DNS.Ill) and |1,
=7 for (LE.II)]. Figure 5 shows PDFs of velocity increments
for the two experiments and for three separation$/I, 10
=3,5,10). In the caseéDNS. Ill), the probability distribution
functions strongly deviate from a Gaussian. This may be 107k
related with the large intensity of the strongest vortitese
Fig. 2). At the core of the vortices we hawe,=15w,s.
However, the observed deviation does not significantly de-
pend on the separation length scale that may be contrasted - _,
with the fact that the dynamic&t least on large scaless g
dominated by coherent structures. Figure 6 represents the
corresponding hyperflatness factors. It can be seen that they 10 ¢
are constant or slowly variable in the inertial range, corre-
sponding again to the weakly scale-dependent shape of the 107}
PDFs.

We have an intermediate case displayed in the simulation 445l s - s - s s
(DNS.II), in which we haveR,=0.01, 1,=15; the vortices 6 4 -2 0 2 4 6
are intense since the vorticity at their center is much larger
(15 times than the root-mean-square fluctuation of as
illustrated in Fig. 2. In this case, we observe far-from-
Gaussian PDFfFig. 5@)] that may be attributed to the pres-
ence of larger and more intense vortices. For comparison, in
(LE.II) the PDFs are much closer to a Gaussian. The differ- FIG. 5. Rescaled PDFs‘of longitudinal velocity increments for
ence between the PDFs could be attributed to the differerffree different separations’(~,=3,5,10) in the inertial range. A
vortex properties: indeed, we only have in this case Gaussian(dashed curjeis shown as a reference. Experiments

— 2\1/2
=T7w,ms &S 0ne can see on the vorticity profile found &} (DNS.I1) (@), (DNS.I1I) (b), and(LE.II) (¢). s=v/{v7)™.
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FIG. 6. Hyperflatness factorsl,, for 2n=4,6,8,10,12(from
bottom to top as a function of scale. Experiment®NS.II) (a),
(DNS.I) (b), and(LE.II) (c).
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(b)

()

FIG. 7. Rescaled PDFs of energy transfer for three different
separations A//,=3,5,10) in the inertial range. Experiments
(DNS.) (@), (DNS.II) (b), and(DNS.1I1) (©). =, [{pf) 2.
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These structures coexist with a inverse cascade regime, chamaller than the scale dependance of the PDF of the velocity
acterized by a classical spectrum and a constant transfer @fcrements in an intermittent cascade, like the 3D direct en-
energy across the scales. The hyperflatness factors stérgy cascade. Therefore the observed weak scale dependence
weakly depend o throughout the entire range of scale we of these PDFs essentially confirms the conclusions drawn
consider, as can be seen in Figa)6 from the statistics of the velocity increments.

C. Transfer statistics IV. CONCLUSION

We consider here numerical experiments. We computed The numerical and experimental results presented in this
the energy fluxe, in experiments(DNS.D), (DNS.II), and  \ork are consistent; the two approaches confirm that there is
(DNS.1Il), at scales similar to those presented above. Fopq sizeable internal intermittency in the two-dimensional in-
simplicity, we actually integrated over square control con-yerse energy cascade. This situation contrasts with the three-
tours. The resulting PDFs are presented in Fig. 7. All thregjimensional case. In the experiments we analyzed, the ab-
PDFs are roughly symmetric, showing that the net inversgence of intermittency is observed even in the condensation
cascade flux results from the compensation of much largefegime, where coherent vortices dominate the large scales of
inverse(positive and direct(negative fluxes. We stress the the system. The PDF of the velocity increments are non-
fact that one does not expect in any case these PDFs 10 kgayssian, and the hyperflatness remains constant in the iner-
Gaussian. Indeedp, is related through Eq(4) to the pres-  tja| range. Considering directly the energy transfer statistics
sure and to the third power of velocity increments, so thakonfirms these results. The deviations from Gaussianity are
even if the latter are Gaussiag, will not, due to this non-  propably associated to the presence of large-scale coherent
linearity. This is the case fdiDNS.I). structures. Nevertheless, and this is our main point, these

The shape of the PDF is not the same in the three experjeviations from Gaussianity are not associated with any
ments. This could be expected, since the statistics of thgeasurable internal intermittency.

velocity increments strongly differ. In addition, the pressure
may have a different contribution in the three experiments.
Despite these differences one can see in all three cases a very
weak| dependence of the shape of the PDFs. This is best
verified in experiment$DNS.I) and(DNS.III). For (DNS.II), We thank M. Vergassola and G. Falkovich for discussions
although its center and tails do not depend on the scale, orencerning this work and M. C. Jullien for her help concern-
can observe a scale dependence of the PDF in the regiong the experimental data. This work was supported bgl&
where the value ob, is close to its root mean square. This Normale Supgeure, Universits Paris 6 and Paris 7, Centre
point would deserve special attention, but is out of the scop®&ational de la Recherche Scientifique, and by EEC Network
of the present article. This dependance is anyway muckKontract No. FMRX-CT98-0175.

ACKNOWLEDGMENTS

[1] M. Rutgers, Phys. Rev. LetB1, 2244(1998. [8] G. Boffetta, A. Celani, and M. Vergassola, Phys. ReG1-29
[2] J. Sommeria, J. Fluid Mech.70, 139 (1986. (2000.

[3] J. Paret and P. Tabeling, Phys. Rev. L@8, 4162(1997). [9] J. Paret and P. Tabeling, Phys. Flulty 3126(1998.

[4] R. Kraichnan, Phys. Fluids0, 1417 (1967 [10] L. Smith and V. Yakhot, J. Fluid Mecl274, 115(1994.

[11] V. Borue, Phys. Rev. Letf72, 1475(1994.

(5] U. FI’ISC.h and P. Sulem, P_h_ys. Fluids, 19_21(1984' [12] C. Basdevant, B. Legras, R. Sadourny, and M. Beland, J.
[6] J. Herring and J. McWilliams, J. Fluid Mechl3, 229 Atmos. Sci.38, 2305(1981).
(1985. [13] J. Paret(unpublishel
[7] A. Babiano, B. Dubrulle, and P. Frick, Phys. Rev5E 3719  [14] A. Babiano, B. Dubrulle, and P. Frick, Phys. Rev5g 2693
(1995. (1997.

036302-7



